If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49p^2-14p=1
We move all terms to the left:
49p^2-14p-(1)=0
a = 49; b = -14; c = -1;
Δ = b2-4ac
Δ = -142-4·49·(-1)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14\sqrt{2}}{2*49}=\frac{14-14\sqrt{2}}{98} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14\sqrt{2}}{2*49}=\frac{14+14\sqrt{2}}{98} $
| 20+2x=-3x | | 52=-4x-x | | -2-3-7x=-32 | | 1+x=7×8 | | 10y=16+9y | | 1.6q=4.24+2.4q | | 7+26=-3w-8w | | 12.61-16.4v-18.41=-15.6v-3.64 | | 5(3x+2)-2x(2+x)=0 | | 2x-7(-1/5)=3 | | -13.5y+13.36+9.9=-16.2y-14.54 | | 5(3x+2)-2x(2+x)=(2+x)(5-2x) | | 14x+28=6x-18 | | 4(2x−1)=20 | | 11-10z=-19-16z | | Y=-5/8x+10 | | 2{5m-1}=48 | | 1/2y+10=12 | | -16g=48 | | -17+14c+8c=20c+19 | | 7x +2=4 | | 3(k+6)-(-k+6)=-5k+7+6k-7 | | -1/4k=3/4 | | -7u+20+18u=8u-13 | | -0.72-9m=6.32-8.2m | | 5.6a=30 | | 6(x+2)+7=19 | | -6(8v-7)=-40-7v | | 8x–11(x-2)=-8 | | 2(-4y)-7y=3 | | 12j-7=7j+16j+15 | | 120+0.60=30+0.09x |